Using SAS® and Other XML Tools Effectively
Scott E. Chapal, JIWJERC Ichauway Inc., Newton, GA

Abstract

SAS programmers who have XML processing needs, face a
bewildering array of tools and standards to consider. The
XML tools in SAS include ODS MARKUP, PROC
TEMPLATE, and the LIBNAME XML engine with XMLMap.
However, particular applications might be enhanced by the
use of other tools and approaches also.

There are many other technologies available for XML
document modeling, processing and presentation. This
paper attempts to sort through some of the standards-based
XML tools to provide a view from a SAS-centric perspective.
The utility of these XML supporting technologies will be
considered in relation to the functionality of the SAS XML
tools. Emphasis will focus on Java-based examples.

Introduction

In the past few years, the eXtensible Markup Language
(XML) has become the prevailing standard markup language
used to provide structured information. Due to it's
configurability and open format, XML has even been termed
“Self Describing Data”. Although often over-hyped, XML has
penetrated Information Technology to such an extent that
even we SAS programmers have no choice but to try to
understand the impact of XML and the processing tools
available to us.

A cursory assessment might lead one to conclude that
XML is just another markup language and that deciding how
to create and use XML is, well, simple. This view may be
tied to the success of HTML, ironically, since the markup
provided by HTML is presentation focused whereas XML
provides the capacity for markup based on the content of the
data. Some XML problems are simple, but there are many
purposes for XML and many processing options and the
choices among those options are sometimes not obvious.
The XML supporting technologies and associated standards
(XMLSchema, XSLT, XPath, etc.) as well the proliferation of
XML vocabularies which are maturing rapidly (DocBook,
ebXML CDISC, for example), make it challenging to
understand the XML landscape. Additionally, there are
numerous XML software options, both commercial and open
source which also complicate the decision making. So, a
walk through some of the prominent standards and tools
might help to clarify how to use this XML toolkit more
effectively in a SAS environment.

Standards considerations

Since XML was derived from SGML (Standard Generalized
Markup Language - ISO 8879:1986), the structure of an
XML document was defined in a DTD (Document Type
Definition) until recently. Now, however, other means of
defining document structure have been developed, notably
XML Schema which was approved as a W3C
Recommendation in 2001.

XMLSchema is an XML language for defining and
constraining the content of XML documents including those
which exploit the XML Namespace facility. XMLSchema
validation can be extended by additional constraints
expressed in XSLT/XPath to supplement limitations in
XMLSchema. “The purpose of a schema is to define a class
of XML documents, and so the term "instance document” is
often used to describe an XML document that conforms to a
particular schema.”(XML Schema Part O: Primer 2001) A
validating parser can be used to verify the structure of an
instance document against the constraint rules provided in
the XML Schema. XML Schemas have certain advantages
over DTD’s. An XML Schema can define datatypes and
other complex structures that are difficult or impossible to do
in a DTD. Schemas are themselves XML documents, so
XSLT stylesheets can be written to manipulate them.

XML Namespaces provides an extensibility mechanism
for the modular re-use of XML vocabularies (Namespaces in
XML 1999). An XML Namespace, identified by a URI in an
XML document, provides an unambiguous reference to a
markup vocabulary which is defined elsewhere. Thus, XML
documents can be assembled from component
“namespaces” with the ability to distinguish between
duplicate element type and attribute names.

XSLT Extensible Stylesheet Language Transformations
(Clark 1999) is a W3C standard designed for manipulating
XML to other formats: text, HTML, other XML formats, or
even PDF. XSLT uses a template based approach to
addressing and transforming selected parts of an XML
document via XPath notation(Clark & DeRose 1999).
“Generally, XSLT provides a series of operations and
manipulators, while XPath provides precision of selection
and addressing’(Gardner & Rendon 2002). XSLT/XPath is a
core XML technology which is well supported and well
understood and is likely to be around for a long time.

XSLT has been criticized for being a difficult language to
learn and use, however it is ideally suited to treat an XML
document as a complex data structure by providing powerful
tools for extracting that information into derivative data
representations. The effort involved in creating XSLT
stylesheets is not wasted if other components of a system
change over time (ie. Java or even SAS!). Core XSLT
capabilities include: string manipulation, numerical
operations, Dates and Times and XML Transformation.
XSLT capabilities can also be enhanced through extensibility
to use functions in code defined external to the XSLT
processor. XSLT 2.0 and XPath 2.0 are being developed in
conjunction with one another.

Rationale for XML

For SAS programmers and data managers, understanding
the XML capabilities provided by SAS in relation to other
XML technologies is important when planning for
applications. A motivation for using XML in the first place is
to achieve flexible, extensible markup. Some design choices
can restrict the flexibility of XML. Design considerations for
SAS and XML integration might include planning for content
markup, data exchange and document modeling.

Content Markup

One of the design objectives of XML applications is the
deliberate separation of content from presentation. This
achieves re-usability of content decoupled from
considerations of presentation. A similar concept is
contained in the Model-View-Controller (MVC) design
paradigm used to develop interactive web-tier applications.
The Model, View and Controller aspects are intentionally
separate in their respective functions, but in combination
form a cohesive, flexible system. An example is the Apache
Project Struts web application framework which supports
the MVC (Model 2) design pattern by providing a controller
component which integrates with other model and view
components. The benefits of MVC include encouraging code
reuse, centralizing control and ease of modification.

Likewise, the separation of content from presentation,
possible with XML, provides a division of functionality which
makes design and maintenance clearer. XML provides for
extensible markup vocabularies where the structure,
meaning and relationships of the data can be designed to be
self-evident. Well-designed XML markup is internally
consistent (well-formed and valid) and appropriate to a
particular purpose. Unlike HTML, where data and formatting
instructions are intertwined, XML can provide structured
content-markup. Thus, XML used in combination with
validation criteria (Schema) supports the goal of separating
content from presentation in applications.

Data Exchange

Exchanging data within and between applications is an
ascendant role for XML due to its platform independence,
flexible expressivity and support for Unicode. SAS itself is

incorporating Unicode support starting in

9.1(Beatrous 2003). Further, XML data can function to
decouple systems making the components easier to
maintain and replace. This loose-coupling is one of the
precepts of Web Services which promises the extension of
complex services via XML over the Internet. Web Services,
sometimes characterized as a mere retread of the RPC
concept, has a high potential for adoption in large part
because XML standards provide a a common framework
which serves to stabilize and orient development.

XML is widely used for data exchange in the form of
“Messaging”. A message simply defined as a collection of
data fields organized into a header and a payload, which is
a structure that is easily expressed in XML. There are
relevant API's, such as the the Java API for XML Messaging
(JAXM), and standards, including the Simple Object Access
Protocol (SOAP) for messaging and RPC. When an
application necessitates “loose coupling” of the components,
(as in the evolving “Web Service” model), XML messaging
provides a flexible structured data transport medium.

ebXML (electronic business using eXtensible Markup
Language) “is a modular suite of specifications that enables
enterprises of any size and in any geographical location to
conduct business over the Internet. Using ebXML,
companies now have a standard method to exchange
business messages, conduct trading relationships,
communicate data in common terms and define and register
business processes” www.ebxml . org.

CDISC is an example of a standards driven,
domain-specific XML vocabulary gaining broad use. The
Clinical Data Interchange Standards Consortium is an open,
multidisciplinary, non-profit organization. CDISC is
committed to the development of worldwide industry
standards to support the electronic acquisition, exchange,
submission and archiving of clinical trials data and metadata
for medical and bio-pharmaceutical product development. A
goal of CDISC was to base the Operational Data Model on
XML technology with eventual support for XML Schemas.
The CDISC XML example is also relevant due to the
prominence of SAS in clinical data management and the
historical use of the v5 transport format for submissions.

Document Modeling

Metadata is often defined as data about data. Using this
most basic definition, it could be said that XML is (or at least
contains) meta-data! Beyond the simplistic definition
however, the term meta-data often implies a specific highly
structured representation of a data resource or application.
This kind of highly structured metadata is another role to
which XML is well suited. For instance, the Dublin Core
Metadata Initiative provides a set of standardized elements
for tagging metadata. “The Dublin Core metadata element
set is a standard for cross-domain information resource
description.”(DCMI 2003). Additionally, relationships could
then be assembled using XMLSchema (or RDF - Resource
Description Framework), to combine elements from distinct

www.ebxml.org

namespaces into modular metadata schemas. Although
those details are beyond the scope of this paper, the point is
that XML can be used to build complex metadata which is
human readable, web accessible and machine process-able.
Those modular metadata schema are an example of the
sophisticated document modeling jobs to which XML is
suited.

DocBook is an example of a mature SGML/XML
document modeling vocabulary. “DocBook is a very popular
set of tags for describing books, articles, and other prose
documents, particularly technical documentation”(Walsh &
Muellner 2002). DocBook developed as an SGML DTD
which provides a large and robust definition for writing
structured documentation (books) with a growing community
of authors. It is relevant to this discussion because: 1)
DocBook provides a standard markup vocabulary for
technical documentation including software and 2) ODS
MARKUP provides a Dochook tagset. There is an
experimental version of DocBook 4.1.2 available as an
XMLSchema®, possibly presaging an official release.

XML from a SAS Perspective

Understanding the XML capabilities in SAS relative to
other (non-sas) XML tools is essential to make more
effective use of these tools independently or in conjunction
with one another.

SAS XML Facilities

The XML features in SAS are in some ways “interdependent”
but they also seem to form a layered system of functionality.
ODS provides destinations for generating flexible output and
also supplies the foundation for tagsets available to
LIBNAME XML through ODS MARKUP and PROC
TEMPLATE.

ODS

The Output Delivery System has been in development since
before the full impact of XML was well established. In fact,
XML tagsets were not incorporated into SAS until relatively
recently and most of the ODS output destinations are
presentation markup (Table 1). The “abstraction”(Figure 1a)
of output types provided by ODS consists of a collection of
‘destinations’ primarily designed for formatting
SAS-generated output. Much of the utility of ODS is its
power to generate formatted tabular reports, however there
are graphical and page layout capabilities also. It is also the
case that many of these output formats are now possible
using XML as the common format and tools such as
XSLT(Figure 1b).

Beginning with version 9.0, SAS provides a hew
formatted ODS destination called ODS DOCUMENT. An
ODS document is a “hierarchical file of output objects that is

Mhttp://www.oasis-open.org/docbook/xmlschema/4.1.2.3/

(a) ODS generates output tables to multiple desti-
nations including XML via ODS MARKUP.

XML SOURCE

(b) XML transformation via XSLT to multiple for-
mats achieves similar results. XSL-FO provides
Formatting Objects into PDF.

XML Schema

(c) XML can be validated via XML Schema and
transformed via XSLT to accomplish various, or
multiple document requirements.

Figure 1: The Output Delivery System and XML/XSL trans-
formation tools provide distinct and overlapping functionality.

http://www.oasis-open.org/docbook/xmlschema/4.1.2.3/

OoDS Version
Destination Purpose Introduced
LISTING Default (output) 8"
OUTPUT Output Data Set 8
PRINTER PS, PCL, PDF 8

HTML HTML 3.2 8

RTF RTF 8.2
DOCUMENT | “Raw” output stream | 9.0
MARKUP Tagsets 9.0°

v8 destinations originated in v7?
> Pre-production 8.2

Table 1: The purpose of ODS destinations has been
expanded to include the DOCUMENT destination as
well as the flexible MARKUP tagset facility.

created from a procedure or data query”. The ODS
document resides in a SAS library and and has the
persistence characteristics of other library members. ODS
Document would seem to accomplish “content markup” in
much the same way that an XML vocabulary could, although
ODS documents are not portable across operating systems,
presumably.

Hierarchical <& Rectangular Transformation

Getting XML data into and out of data sets is a basic
requirement for SAS applications. The problem of taking
XML encoded data and translating it into a record-oriented
SAS data set structure is straight forward for “regular® XML
and non-trivial for “hierarchical” XML forms. In reality
however, a lot of XML markup is document-oriented (very
hierarchical) and may contain additional complexities of IDs,
Links, sub-documents and so on. Obviously, the hierarchical
nature of XML data representation contrasts distinctly with
the 'rectangular’ nature of SAS data sets and illustrates the
need for efficient and automate-able means of
‘transformation’.

Libname XML

The SAS XML Libname Engine (SXLE) provides an
import/export method for inter-converting SAS data sets to
regular’ XML. The export of XML® uses familiar libname
syntax:

libname export xml ’class.xml’;
data export.class;

set sashelp.class;

run;

The resulting XML is 'regular’ with the document root
element <TABLE/> containing a series of <DATASET/>
elements, (corresponding to the data set name) each of
which contains elements corresponding to the variables in
the data set: Name, Sex, Age etc.

2 Essentially, XML markup which already represents a rectan-

gular, or minimally hierarchical (Table 1) organization, of the data!
3 v9.0 default uses the SASXMOG (Table 2) Tagset

<?xml version="1.0" encoding="iso-8859-1" 7>
<TABLE>
<CLASS>
<Name> Alfred </Name>
<Sex> M </Sex>
<Age> 14 </Age>
<Height> 69 </Height>
<Weight> 112.5 </Weight>
</CLASS>

Importing data via Libname XML is similar:

libname import xml ’regular_class.xml’;
data class;

set import.class;

run;

and requires a specifically structured XML document,
generally of the form:

<?xml version="1.0" 7>
<DATA>
<DATASET1>
<VARIABLE1> Variablel_Value </VARIABLE1>
<VARIABLE2> Variable2_Value </VARIABLE2>

</DA'i‘ASET1>
‘.;DATASET2>
</D,£\"i"1;SET2>
;)bATA>
The document-root element <DATA/>, contains repeating
instances of elements named for the data set they represent

<DATASET1/>, <DATASET2/>, each of which contain the
variables for the data set.*

XMLMap

The regular’ XML requirement in libname XML feature can
be overcome with XMLMap to import and export
'non-regular’ XML. XMLMap utilizes XPath (Clark &
DeRose 1999) notation and version 9.1 will use dataTypes
which conform to XML Schema DataTypes specification. An
XMLMap fragment shows the hierarchical structure:

<TABLE name="Class">

<TABLE-PATH syntax="xpath">
/class:Class/Grade/Group/Student
</TABLE-PATH>
<COLUMN name="Age" retain="yes">
<PATH>/class:Class/Grade/@Age

4 Other XML formats can be generated/invoked using the XML-
TYPE= option. Supported output types in v9.0 are: GENERIC,
ORACLE, OIMDBM, EXPORT, HTML (export is currently aliased
to OIMDBM). The XMLMETA= option to libname XML provides for
“metadata-related” information in the markup, most obvious in the
OIMDBM format. However, as of 9.0 the OIM XMLTYPE has been
deprecated and support for OIM is being discontinued (Friebel 2003),
with the functionality being shifted to other XMLtypes.

</PATH>

<TYPE>character</TYPE>
<DATATYPE>INTEGER</DATATYPE>
<LENGTH>3</LENGTH>

</COLUMN>

<COLUMN name="Sex" retain="yes">
<PATH>/class:Class/Grade/Group/@Sex

A simple invocation will read the MAPped data.

filename in ’./output/class_custom_put.xml’;
filename map ’./class_map.xml’;
libname in xml xmlmap=MAP;

proc print data=in.Class; run;

Building and debugging the XMLMap can be challenging, as
SAS does not seem to provide very diagnostic error
messages. The XML Mapper (Atlas) application is a
graphical interface used to assist in XMLMap creation, and
is reported to support XML Schema in 9.1. XSLT might be a
viable alternative or companion technology for handling
convoluted XML data structures.

Using Schema

Recall the CLASS data rendered by Libname XML:

<?7xml version="1.0" encoding="iso-8859-1" 7>
<TABLE>
<CLASS>
<Name> Alfred </Name>
<Sex> M </Sex>
<Age> 14 </Age>
<Height> 69 </Height>
<Weight> 112.5 </Weight>
</CLASS>

A description of this class of document(s) could be declared
in a simple XML Schema:

<?xml version="1.0" encoding="UTF-8"7>
<schema xmlns="http://www.w3.o0rg/2001/XMLSchema">
<element name="TABLE"
minOccurs="1" maxOccurs="1">
<complexType>
<sequence>
<element name="CLASS"
minOccurs="1" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="Name" type="string"/>
<element name="Sex" type="string"/>
<element name="Age" type="integer"/>
<element name="Height" type="decimal"/>
<element name="Weight" type="decimal"/>
</sequence>
</complexType>
</element>
</sequence>

</complexType>
</element>
</schema>

Notice that the structure of the schema is explicit and is
more-or-less obvious. <CLASS/> (a complex element) must
occur one or more times and is composed of Name, Sex,
Age, Height and Weight elements, each declared with a
respective type®. Element sequence, repeatability,
optionality and associated attributes are all definable in the
Schema (however this topic is far more involved than the
brief treatment given here).

In the previous instance document example, Name, Sex,
Age, Height and Weight are all component elements of
CLASS. Consider a different XML document requirement
which is more ’hierarchical’ than the libname XML default.
You could distinguish the Name of the Student as a distinct
subject, having the measurable properties of height and
weight, and belonging to a sex group and of a certain age. In
this example, suppose that the quantities of interest in the
class data set are height and weight and the other variables
could be considered as groups or meta-data. ..so their
values might well be portrayed as attributes in the instance
document.

<Group Sex="F">
<Student Name="Joyce">

Perhaps a more “Russian-doll” representation of these data
might be appropriate for some purpose:

<Grade Age="11">
<Group Sex="F">
<Student Name="Joyce">
<Height> 51.3 </Height>
<Weight> 50.5 </Weight>
</Student>
</Group>
<Group Sex="M">
<Student Name="Thomas">
<Height> 57.5 </Height>
<Weight> 85 </Weight>
</Student>
</Group>
</Grade>
<Grade Age="12">

If, in fact, height and weight are of quantitative interest, it
might be important to include a definition of the units of
measurement. These could be included as attributes, for
example:

<Height unit="inch">
<Weight unit="pound">

and repeated for every <Student/>. But they might also be
declared once, if their use was consistent in the instance
document:

5 See http://www.w3.org/TR/xmlschema-2/ for a discussion

of XML Schema DataTypes.

http://www.w3.org/TR/xmlschema-2/

<units>
<ageunit name="year"/>
<htunit name="inch"/>
<wtunit name="pound"/>
</units>

A data step approach to generate this format is shown in
Appendix | and a somewhat more involved XML Schema
which validates this format is outlined in Appendix II.

Having the ability generate an XML Schema for content
created by SXLE would be important for automating XML
based applications. A new tagset sasxmxsd has been
described for Version 9 (Friebel 2003) to provide this
functionality:

libname xsdgen xml ’xml-with-xsd.xml’
tagset=tagsets.sasxmxsd;

Using XML Tagsets

As mentioned previously, XML output can be generated in a
SAS data step with put statements:

put ’<doc-root>’;
put ’> <element>’ value ’</element>’;

put ’</doc-root>’;

But, it is obvious that this is tedious, potentially error prone
(well-formedness is not even checked), and there are better
ways.

The SAS supplied tagsets are a collection of markup
styles ranging from TROFF to XML (Table 2). The XML
tagset names that start with “SAS” are used with the libname
XML engine for reading and writing XML encoded data.
Using the ODS MARKUP statement without an explicit
tagset declaration, creates an XML document. The basic
invocation uses a file (and path, if not the current directory)
descriptor to write to. The ODS XML destination is an alias
to invoke this default XML output.

ods markup path=’output’
file=’default.xml’;
proc whatever;

ods markup close;

The ID= option is useful to route output to multiple instances
of the same destination (in this case XML), each with
different options (type = is an alias for tagset=).

ods markup (id=1) tagset=default
file = "default.xml"

ods markup (id=2) type=event_map
file="default_event_map.xml";

File-type specifications can be used with ODS MARKUP
XML tagsets to generate other XML specific files. Using
type=default produces an xsl file, a DTD and a Cascading
stylesheet.

ods markup
type = default

code = "default.xsl"
frame = "default.dtd"
stylesheet = "default.css"

The output from these options appears to have changed
substantially from SAS 8.2 to 9.0. The XSLT file produced by
code= generates instructions for HTML transformation, as
can be seen in the xsl:output element of the generated XSL
file:

<xsl:output method="html"/>

By using the code= and stylesheet= file-specifications
together with the default tagset, the XSLT file references the
Cascading Stylesheet, as seen in this default.xsl
fragment:

<?xml version="1.0"7>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0org/1999/XSL/Transform"
xmlns="http://www.w3.org/TR/REC-html140">
<xsl:output method="html"/>
<xsl:template match="odsxml">
<HTML>
<HEAD>

<TITLE><xsl:value-of select="proc/title"/></TITLE>

<LINK REL="STYLESHEET" HREF="class.css">

The above fragment is also useful for introducing the
concept of style inheritance for custom tagset generation
with PROC TEMPLATE. There is a problem in the LINK
element within the <xsl:template match="odsxml"> rule
as shown above. Even though the stylesheet is creating
HTML, the stylesheet itself needs to be well-formed XML.
(HTML doesn’t care, XML does). The LINK element has no
closing LINK tag, or a trailing / before the closing angle
bracket. So the element should really look like:

<LINK REL="STYLESHEET" HREF="class.css"/>

Inheritance can be used to replicate a tagset with certain
events (re)defined if necessary to apply changes or
enhancements to the tagset:

define event code_stylesheet_link;
pth n
NL / if exist(url);

end;

See Appendix V for a program which corrects the tag and
applies it.

Proc Template

Version 9.0 uses the SASXMOG Tagset by default for writing
XML via libname XML. It’s instructive to look at the tagset
definition from PROC TEMPLATE by using the SOURCE
statement to decompile the definition:

proc template;
source tagsets.sasxmog;

<LINK REL=""STYLESHEET"" HREF=" url "/>"

| TAGSET Markup

HTML
CHTML CHTML
HTML4 HTML 4 w/ Stylesheet
HTMLCSS HTML w/ CSS
IMODE IMode
PHTML Plain HTML
WML WML
WMLOLIST WML

ATEX
COLORLATEX Color IBTEX
LATEX ATEX

Csv
Csv Tabular CSV
CSVALL CSv
CSVBYLINE CSV

XML
DEFAULT ODSXML (Generic XML)
DOCBOOK OASIS DocBook
PYX Pyxie

Events
EVENT_MAP Events
NAMEDHTML Diagnostic
SHORTMAP Events (Short)
TEXTMAP Events (Text)
TPL_STYLE_LIST | Events (HTML)
TPL_STYLE_MAP | Events (XML)

Graphics
GTABLEAPPLET | GTableApplet

LIBNAME XML
SASIOXML Generic XML
SASXMOG Oracle8iXML Generic?*
SASXMOH Simple HTML
SASXMOIM OIM XML
SASXMOR Oracle8iXML

Printer
TROFF Troff

a LIBNAME XMLTYPE=Generic

Table 2: ODS MARKUP tagsets documented in

SAS v9.0

This reveals that SASXMOG is derived from:

parent = tagsets.sasioXML;

Likewise SASIOXML shows:

parent = tagsets.sasXML;

And finally SASXML consists only of:

define tagset Tagsets.Sasxml;
notes "SAS XML model";
define event XMLversion;
put "<?xml version=""1.0""";
putq " encoding=" ENCODING;

put " ?>" NL;

break;
end;

define event XMLcomment;

put "<!-- " NL;
put " " TEXT NL;
put " -->" NL;
break;
end;
mapsub = Ynrstr("/</>/&/"/'/");
map = jnrstr("<>&""’");
indent = 3;

end;

which is just the XMLversion and XMLcomment events, that
are common to all XML tagsets. Without digging into the
details, this at least illustrates the inheritance model which is
used to define SASXMOG: SASXML = SASIOXML =-SASXMOG

ODS diagnostic (events) tagsets can be used to
understand event sequences and therefore to extend or
design new tagsets (Gebhart 2002). Creating sophisticated
custom tagsets requires familiarity with many aspects of
PROC TEMPLATE, notably DEFINE EVENT, including the
trigger and put* statements and conditional logic syntax.
Also important is an understanding of the implications of the
PROC TEMPLATE inheritance mechanisms for generating
XML, including style-definition and style-element inheritance.
There is a learning curve.

Other XML tools

Java implementations

Xalan The Apache project has been prolific in creating
open source software, not the least of which is the Xalan
XSLT processor. Xalan-Java can be used in command-line
mode:

java org.apache.xalan.xslt.Process
-XSL class.xsl -IN class.xml

This is useful for development, batch processing, or even
invoking from SAS (Appendix V). More commonly, however,
Xalan is probably used in a programmatic context. As a
component of a servlet, for example, responding to requests
for XML documents by transforming those documents into
HTML and serving them to web browsers. Xalan supports
the JAXP “pluggability” concept for transformation and
parsing and supports creating and processing DOM trees.

JAXP The Java API for XML Processing (JAXP) enables
applications to parse and transform XML documents using
an API that is independent of a particular XML processor
implementation. JAXP supports processing of XML
documents using DOM, SAX and XSLT. It is essentially an
abstraction which allows the substitution of different parser
in an application without changing the application code. This
achieves vendor/implementation independence of parsers:
“It encapsulates differences between various XML parsers,
allowing Java programmers to use a consistent API
regardless of which parser they use”(Burke 2001).

JAXB The Java Architecture for XML Binding (JAXB)
“provides an API and tools that automate the mapping
between XML documents and Java objects”
java.sun.com/xml/jaxb/. JAXB achieves access to XML
data by compiling (xjc) an XML schema into Java classes.
This provides fine-grained control of XML content into and
out of Java objects including validation of the Java
representation against schema constraints. Castor is
another (open-source) Java-based framework which
provides XML/Java/SQL binding, including object
persistence to a RDBMS castor. org.

Parsing and validating is a ubiquitous requirement for
XML processing, and the standard in the Java world seems
to have settled on Xerces (xml.apache.org). Xerces is a
fully conforming XML Schema parser which includes DOM
and Namespaces processing capabilities. Another useful
tool, especially when designing or debugging Schemas, is
SUN’s Multi-Schema Validator: © which provides a
command-line tool for schema (DTD/RELAX/TREX/W3C)
validation and supplies very informational error messages.

Conclusions

Figuring out how to combine the capabilities of SAS with
other XML tools can be daunting. This whirlwind overview of
some of the standards and XML technologies is a starting
point, but certainly just that — a start. Many of the features of
SAS 9.1 are not yet available or fully understood. As
developments continue in SAS, including WebAF and
Integration Technologies, they may provide new capabilities
to address XML problems. It might be difficult to assess
PROC TEMPLATE or XSLT, but the challenge, as always, is
to choose wisely.

There are boundaries, but they might be difficult to
discern. — Chinese Fortune (Cookie)

Acknowledgments

I would like to thank lan Whitlock and Ed Heaton for
encouraging me to participate in SESUG 2003.

Contact Information

Your comments and questions are valued and encouraged.
Contact the author at:

Scott Chapal

JWJERC

Ichauway, Inc.

Rt. 2 Box 2324

Newton GA. 39819
scott.chapal@jonesctr.org

6

http://wwws.sun.com/software/xml/developers/multischema/
P P

References

Beatrous, S. (2003). Multilingual computing with the 9.1 SAS
unicode server, Proceedings of the Twenty-Eighth
Annual SAS® User Group Conference, SAS Institute,
Inc.

Burke, E. M. (2001). Java and XSLT, first edn, O'Reilly.

Clark, J. (1999). Xsl transformations(XSLT) version 1.0,
"http://www.w3.org/TR/xslt”.

Clark, J. & DeRose, S. (1999). XML path language (xpath)
version 1.0, "http://www.w3.org/TR/xpath”.

DCMI (2003). "http://dublincore.org/documents/dces/".

Friebel, A. (2003). XML? we do that!, Proceedings of the
Twenty-Eigth Annual SAS Users Group International
Conference, SAS Institute, Inc, pp. 173-28.

Gardner, J. R. & Rendon, Z. L. (2002). XSLT & XPATH: A
guide to XML transformations, Prentice Hall.

Gebhart, E. (2002). Markup: The power of choice and
change,, Proceedings of the Twenty-Seventh Annual
SAS® User Group Conference, SAS Institute, Inc.

Namespaces in XML (1999).
"http://www.w3.org/TR/REC-xml-names/".

Walsh, N. & Muellner, L. (2002). DocBook The Definitive
Guide, 2nd edn, O'Reilly.

XML Schema Part 0: Primer (2001).
Appendices

Appendix |

SAS class data set custom XML via put statements.

filename custom ’./output/class_custom_put.xml’;
data class;
set sashelp.class;
proc sort data=class;
by age sex name;
run;

data _null_;

file custom;

set class nobs=Last;

by age sex name;

if _n_=1 then do;
put ’<?xml version="1.0" 7>’;
put ’<class:Class’;
put ’ xmlns:class="http://class.org/Class">’;
put ’<!-- Units Metadata -->’;
put ’<units>’;
put ’ <ageunit name="year"/>’;
put ’ <htunit name="inch"/>’;
put ’ <wtunit name="pound"/>’;

java.sun.com/xml/jaxb/
castor.org
xml.apache.org
http://wwws.sun.com/software/xml/developers/multischema/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://dublincore.org/documents/dces/
http://www.w3.org/TR/REC-xml-names/

if

if

if

if

if

run;

put ’</units>’;

put ’<!-- Class Data -->’;

output;

end;

first.age then do;

put ’ <Grade Age="’ age +(-1) ’">’;
end;
first.sex then do;

put ’ <Group Sex="’ sex +(-1) ’">’;
end;

put ’ <Student Name="’ name +(-1) ’">’;

put ’ <Height> ’ height ’</Height>’;
put °’ <Weight> ’ weight ’</Weight>’;
put ’ </Student>’;

last.sex then do;

put > </Group>’;

end;

last.age then do;

put ’ </Grade>’;

end;

n_ = Last then do;

put ’</class:Class>’;

output;

end;

Appendix Il

XML

Schema to validate the custom class XML.

<?xml version="1.0" encoding="UTF-8"7>
<schema

<el

<c
<

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:class="http://class.org/Class"

targetNamespace="http://class.org/Class">

ement name="Class"
minOccurs="1" maxOccurs="1">
omplexType>
sequence>
<element name="units"
minOccurs="1"
maxOccurs="1">
<complexType>
<sequence>
<element name="ageunit"
minOccurs="1"
max0Occurs="1">
<complexType>
<attribute name="name"
use="required"
default="year"/>

</complexType>

</element>

<element name="htunit">
<complexType><!-- Height units -->

<attribute name="name"
use="required"
default="centimeter">
<simpleType>
<restriction base="string">
<enumeration value="inch"/>

<enumeration value="centimeter"/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>
<element name="wtunit">
<complexType><!-- Weight units -->
<attribute name='"name"
use="required"
default="kilogram">
<simpleType>
<restriction base="string">
<enumeration value="pound"/>
<enumeration value="kilogram"/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>
</sequence>
</complexType>
</element><!-- Units -->
<element name="Grade"
minOccurs="1"
max0Occurs="6"><!-- 6 yr range -->
<complexType>
<attribute name="Age"
type="integer"
use="required"/>
<sequence>
<element name="Group"
minOccurs="1"
maxOccurs="2"
use="required"><!-- 2 Groups-->
<complexType>
<attribute name="Sex"
type="string"
use="required"/>
<sequence>
<element name="Student"
minOccurs="1"
max0Occurs="5"
use="required">
<complexType>
<attribute name="Name"
type="string"
use="required"/>
<sequence>
<element name="Height"
type="decimal"
use="required"/>
<element name="Weight"
type="decimal"
use="required"/>
</sequence>
</complexType>
</element><!-- Student -->
</sequence>
</complexType>
</element><!-- Group -->
</sequence>

</complexType>
</element><!-- Grade -->
</sequence>
</complexType>
</element><!-- Class -—>
</schema>

Appendix llI

Partial listing of custom class XML.

<?xml version="1.0" 7>
<class:Class
xmlns:class="http://class.org/Class">
<!-- Units Metadata -->
<units>
<ageunit name="year"/>
<htunit name="inch"/>
<wtunit name="pound"/>
</units>
<!-- Class Data -->
<Grade Age="11">
<Group Sex="F">
<Student Name="Joyce">
<Height> 51.3 </Height>
<Weight> 50.5 </Weight>
</Student>
</Group>
<Group Sex="M">
<Student Name="Thomas">
<Height> 57.5 </Height>
<Weight> 85 </Weight>
</Student>
</Group>
</Grade>
<Grade Age="12">

Appendix IV

XMLMap to read custom class XML.

<?xml version="1.0" 7>
<SXLEMap version="1.1">
<TABLE name="Class">
<TABLE-PATH syntax="xpath">
/class:Class/Grade/Group/Student
</TABLE-PATH>
<COLUMN name="Age" retain="yes">
<PATH>/class:Class/Grade/QAge
</PATH>
<TYPE>character</TYPE>
<DATATYPE>INTEGER</DATATYPE>
<LENGTH>3</LENGTH>
</COLUMN>
<COLUMN name="Sex" retain="yes">

<PATH>/class:Class/Grade/Group/@Sex
</PATH>

<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>

</COLUMN>
<COLUMN name="Name">

<PATH>
/class:Class/Grade/Group/Student/@Name
</PATH>

<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>8</LENGTH>

</COLUMN>
<COLUMN name="Height">

<PATH>
/class:Class/Grade/Group/Student/Height
</PATH>

<TYPE>numeric</TYPE>
<DATATYPE>FLOAT</DATATYPE>

</COLUMN>
<COLUMN name="Weight">

<PATH>
/class:Class/Grade/Group/Student/Weight
</PATH>

<TYPE>numeric</TYPE>
<DATATYPE>FLOAT</DATATYPE>

</COLUMN>
</TABLE>
</SXLEMap>

Appendix V

Write and use a slightly modified tagset.

ods path sasuser.templat (update)
sashelp.tmplmst (read);
proc template;

X

define tagset tagsets.new /store=sasuser.templat;

parent=tagsets.default;
define event code_stylesheet_link;

putq " <LINK REL=""STYLESHEET"" HREF=" url "/>"

NL / if exist(url);

end;
end;
run;
ods xml type=new

path=’output’ (url=none)

file=’class.xml’

code=’class.xsl’

stylesheet=’class.css’;

proc print data=sashelp.class noobs;

where age=14 and sex=’F’;

title ’Generating HTML from XML, XSL and CSS’;
run;
ods xml close;

x "cd output";

x "java org.apache.xalan.xslt.Process \
-XSL class.xsl -IN class.xml -HTML \
-0UT class.html";

"cd ..

".
)

